top of page


[15] NMRium: Teaching Nuclear Magnetic Resonance Spectra Interpretation in an Online Platform

L. Patiny, H. Musallam, A. Bolaños, M. Zasso, J. Wist, M. Karayilan, E. Ziegler, J. C. Liermann, N. E. Schlörer, in prep., 2023.

NMRium logo.png

[14] Formation of Choline Salts and Dipolar Ions for CO2 Reactive Eutectic Solvents

R. Dikki, E. Cagli, D. Penley, M. Karayilan, B. Gurkan, Chem. Commun., 2023.

[13] Thermoresponsive Polymers with LCST Transition: Synthesis, Characterization, and Their Impact on Biomedical Frontiers

Y. YuanK. Raheja, N. B. Milbrandt, S. Beilharz, S. Tene, S. Oshabaheebwa, U. A. Gurkan, A. C. S. Samia, M. Karayilan,* RSC Applied Polymers, 2023

TOC for thermoresponsive.png

Prior to CWRU


[12] Reassessing Undergraduate Polymer Chemistry Laboratory Experiments for Virtual Learning Environments

M. Karayilan,* S. McDonald, A. Bahnick, K. Godwin, Y. M. Chan, M. L. Becker, J. Chem. Educ., 2022,

99, 5, 1877-1889.

From benchtop to desktop: Adapting chemistry laboratory experiments to virtual learning environments.

[11] Zooming in on Polymer Chemistry and Designing Synthesis of High Sulfur-Content Polymers for Virtual Undergraduate Laboratory Experiment

M. Karayilan,* J. Vakil, D. Fowler, M. L. Becker, C. T. Cox, J. Chem. Educ., 2021, 98, 6, 2062–2073.


[10] Polymeric Materials for Eye Surface and Intraocular Applications

M. Karayilan, L. Claimen, M. L. Becker, Biomacromolecules, 2021, 22, 2, 223–261.


[9] Increasing the rate of the hydrogen evolution reaction in neutral water with protic buffer electrolytes

K. E. Clary, M. Karayilan, K. C. McCleary-Petersen, H. Petersen, R. S. Glass, J. Pyun, and D. L. Lichtenberger, PNAS, 2020, 117 (52) 32947-32953.


[8] Influence of Processing Environment on the Surface Composition and Electronic Structure of Size-Quantized CdSe Quantum Dots

R. C. Shallcross, A. L. Graham, M. Karayilan, N. G. Pavlopoulous, J. Meise, J. Pyun, and N. R. Armstrong, J. Phys. Chem. C, 2020, 124, 39, 21305–21318


[7] Synthesis of Metallopolymers via Atom Transfer Radical Polymerization from a [2Fe‐2S] Metalloinitiator: Molecular Weight Effects on Electrocatalytic Hydrogen Production

M. Karayilan, K. C. McCleary‐Petersen, M. O. Hamilton, L. Fu, K. Matyjaszewski, R. S. Glass, D. L. Lichtenberger, and J. Pyun, Macromol. Rapid Commun. 2020, 41, 1900424


[6] Chalcogenide hybrid inorganic/organic polymer resins: Amine functional prepolymers from elemental sulfur

M. Karayilan, T.S. Kleine, K. J. Carothers, J. J. Griebel, K. M. Frederick, D. A. Loy, R. S. Glass, M. E. Mackay, K. Char, and J. Pyun, J. Polym. Sci. 2020, 58, 35-41.

[5] Water-soluble and air-stable [2Fe-2S]-metallopolymers: A new class of electrocatalysts for H2 production via water splitting

R. S. Glass, J. Pyun, D. L. Lichtenberger, W. P. Brezinski, M. Karayilan, K. E. Clary, and D. H. Evans, Phosphorus, Sulfur, and Silicon and the Related Elements, 2019, 194 (7), 701-706.


[4] Catalytic Metallopolymers from [2Fe‐2S] Clusters: Artificial Metalloenzymes for Hydrogen Production

M. Karayilan, W. P. Brezinski, K. E. Clary, D. L. Lichtenberger, R. S. Glass, J. Pyun, Angew. Chem. Int. Ed., 2019, 58, 7537.


[3] Nucleophilic Activation of Elemental Sulfur for Inverse Vulcanization and Dynamic Covalent Polymerizations

Y. Zhang, N.G. Pavlopoulos, T.S. Kleine, M. Karayilan, R.S. Glass, K. Char, and J. Pyun, J. Polym. Sci. Part A: Polym. Chem., 2019, 57, 7-12


[2] Macromolecular Engineering of the Outer Coordination Sphere of [2Fe-2S] Metallopolymers to Enhance Catalytic Activity for Hydrogen Production

W. P. Brezinski, M. Karayilan, K. E. Clary, K. C. McCleary-Petersen, L. Fu, K. Matyjaszewski, D. H. Evans, D. L. Lichtenberger, R. S. Glass, and J. Pyun, ACS Macro Letters, 2018, 7 (11), 1383-1387.


[1] [FeFe]‐Hydrogenase Mimetic Metallopolymers with Enhanced Catalytic Activity for Hydrogen Production in Water

W. P. Brezinski, M. Karayilan, K. E. Clary, S. Li, L. Fu, K. Matyjaszewski, D. H. Evans, R. S. Glass, D. L. Lichtenberger, J. Pyun, Angew. Chem. Int. Ed., 2018, 57, 11898.

bottom of page